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COMPETITIVE STABILITY UNDER WEAK GROSS SITRSTTITUTARILITY:

~

NONLINEAR PRICE ADJUSTMENT AND ADAPTIVE EXPECTATIONS
by

Kenneth J. Arrow and Leonid Hurwiczl &
Stanford University and the University of Minnesota et
)

—

1. Introduction.

In earlier papers by the authors ([4], pp. 545-549), and in colla,cra-
tion with H. D. Block ({1], pp. 95-104), the global stability of the compet-
itive equilibrium was studied in the case where all commodities are gross
substitutes, that is, aFj/de >0 for all j #k , where F, 1is the

L}

excess demand for commodity J and Pk 18 the price of commodity k
Two dynamic systems were considered: one a linear system in which the
price of each commodity moved proportionately to its excess demand, and
the other a more general nonlinear system in which the rate of change of
each price was a sign-preserving function of the excess demand (in both
cases, with the possible excepticn of a numéraire). For both systems it
was demonstrated that global stabllity held in the strong sense that for
any arbitrary starting point the prices converged to a limit which was
necessarily the competitive equilibrium point (which was unique up to a

proportionality factor under the assumpiions made). For the latter system,

the proof of convergence depended upon showing that the "maximum norm,"

1

Work done with the partial support of a grant from the Rockefeller
Foundation to Stanford University for mathematical research in the social
sciences.




-t

m P P) - s
:Jtl(k/Pk) 1

where P 1s an equilibrium vector, was necessarily decreasing so long
as prices were not at equilibrium.

Subsequently, the stability of nonlinear adjustment processes was
studied by Uzawa [15] and McKenzie [i- | for the case of weak gross
substitutes, i.e., where aFJ A bPk >0 for J # k. In this case, the
equilibrium may not be unique up to a proportionality factor, but it has
been shown by McKenzie ([12], Theorem 1) that the set of equilibria must
form a convex set (see also [2], Theorem 2). Both Uzawa and McKenzie made
assumptions which implied that there exists at least one equilibrium vector
positive in all components. Uzawa assumed that the rate of change of each
price (- iher than the numéraire, if any) was a monotone increasing function
of excess demand which vanishes for zero excess demand, a more restrictive
dynamic system than that considered in [1]; McKenzie assumed that the rate
of change of each price (again other than a possible numéraire) was a
function of &all prices which, however, had the same sign as the excess
demand. Both proved that their respective processes had the property that
Uzawa called "quasi-stability" ([16], pp. 3-4): the price movement starting
from any initial point is always bounded, and the distance from the moving
point to the get of equilibria approaches zero. Equivalently, the second
part of the definition can be replaced by the condition that every limit
point of the path is an equilibrium. This is a wesker property than
convergence to = limit along any path, which we have called (global)

stability
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In this paper, we shail consider McKenzie's dynaxic sysvem, which is
the most general yet proposed, and demonstrate that if there exists at
least one strictly positive equilibrium, then the path defined by the
dynamic system from any starting point will converge to a limit which, of
course, must be an equilibrium. This theorem is stronger than McKenzie's
in the sense that the type of stability proved is somewhat stronger. The
method of proof is somewhat novel, though related to the methods of [1]
and of' Uzawa [15].

The results are extended to the case where current excess demand
depends upon expected future prices asg well as current Prices. It is
assumed that all commodities, present and future, are weak gross sub-~
stitutes, and that expectations about future prices are formed from
bresent and past priceg according to the principle of adaptive expecta-
tions used by Cagan [7], Friedman [9], pp. 143-152, and Nerlove [13] in

empirical studies. This hypothesis requires that expected price be changed

[5] that local stability can be established for adjustment systems where all
commodities are gross substitutes and expectations are adaptive. In this
paper, we show that such adjustment systems are globally stable, provided
that all equilibria are strictly positive.

We start by proving in Section 2 a general theorem on stabllity of
dynamic systems. This theorem 1s used in Sections 3 and 5 to prove the

stability of the systems without and with expected prices, respectively.
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In Section 4, it is shown, by example, that if we do not assume the exist-
ence of at least one positive equilibrium, the nonlinear process may lead
to unbounded solutions. This possibility does not arise in linear systems,
where there is always global stabllity under conditions of weak gross

~

substitutability, as shown in [2], Theorem 2.

2. A Theorem on Stability.

In this section, we consider a general avnamic system,
(1) dp/dt = H(P) ,
and state a set of sufficient conditions for the stabllity of its solutions.

First we state a lemma which is closely related to Lyapunov's "second
method" for proving stability and which has been used implicitly in several

earlier papers (see especislly [3]).

Lemma 1. Constancy of functions on limlt paths. Suppose that for any P°

there is a solution P(t) of equation (1) with P(0) = P° and that, for

fixed t , P(t) 1is a continuous function of P° . Suppose further that

®(P) 1s a continuous function of P , P(t) any solution of (1), and P¥(t)
a limit path of P(t) , i.e., a solution of (1) with P¥(0) = P* = a limit
point of P(t) . Then if &[P(t)] converges to a limit, say &% ,

o[P*(t)] = ¢* , the identity holding in t .

Proof: Use the notation P(t|P°) to denote the solution with
P(OlPO) = . By definition of a limit point, there is a sequence itnk
such that 1im P(tn) = P%¥ . From the continuity in the starting point

n -» 00
and the uniqueness of the solutilon,
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P*(t) = P(t|P*¥) = 1lim P[tIP(tn)] = 1im P[utB]P(O)] = 1im P(t+t ) .
n - 00 n - 00 n - oo

From the continuity of ¢ ,

o[P¥(t)] = o[ 1lim P(t+tn)] = 1lim ¢[P(t+tn)] = ¢* , for any t
n — 00 n - 00

Theorem 1. Suppose the system (1) satisfies the following conditions:

(a) There exlsts at least one positive equilibrium, that is, a point
P>0 for which H(P) =0 ;

(b) for every positive equilibrium P and every solution P(t) ,

m?x PJ(t) / §J is monotone decreasing and min Pj(t) i ?& 15 monotone

increasing;

(¢) for any P° there is a unique solutlon P(t) with P(0) = P° ;
further, for fixed t , P(t) 1s a continuous function of e

(d) 1f P(t) 1is a solution which has at least one component not
eventually constantg, and P*(t) a limit path of P(t) , then at least one
eventually constant component of P¥(t) 1s not eventually constant in P(t) .

Then every solution P(t) of (1) for which P(0) > O converges to a
limit.
Proof': Let the vector P have m components. For any solution P(t) ,
let ¢ be the number of its eventually constant components. The conclusion
holds trivially for any solution for which ¢ = m . We shall prove it for
all solutions by backward induction on ¢

Suppose then the theocrem 1s valid for all solutions with c¢ > c0

eventually constant components, and let P(t) be any solution with e,

A component, Pj(t) , 1s said to be eventually constant if it is

constant for all ¢t > to for some to s




eventually constant components. Let P be any positive equilibrium.
From (b) and the assumption that P(0) > O , we have, for all t >0,

(2) m;a.x PJ(O) / 'ﬁj > m?x PJ(t) 7 §J > PJ.(t) / 'iD'J. zmjin PJ(t) / '1'?'J

>min P (0) /P, >0
P J J

Since max Pj(t) i Pﬁ is monotone decreasing and bounded from below, it
)
must approach a limit. We may therefore define

(3) 1im max P (t) / P, = u(P)

t 200 J J
A similar remark holds for min Pﬁ(t) / f} ; since it 1s prnotone
J

increasing from a positlve beginning, we can write

(4) lim min P(t) / P, = u(P) >0 .
t 200 d J

It follows from (2) that P(t) 1s bounded and hence has a limiv
point P*¥ . Let P*¥(t) be the solution with P*¥(0) = P* . It follows
from (3), (4), and Lemma 1 that
(5) max PX(t) / ’r"*'j = u(P), min Px(t) / P, = u(P) ,

o
the ldentity holdling with respect to t .

For all j such that Pj(t) 1s eventually constant, it is certainly
convergent. By Lemma 1, Pg(t) is constant (hence eventually constant).
From (d), P*(t) has at least one eventually constant component that had

not been eventually constant in P(t) . Therefore, the number of eventually




constant components in P¥(t) 1s greater than c, and by the induction

hypothesis,

(6) lim  P¥(t) = P¥x |
t - 00

for some P*% | yhich must be an equilibrium (see, e.g., [6], Lemma 1, p. 77).
If we replace P(t) by P¥(t) in (2) and use (4) and (5),

Pg(t) > P,

J w(P) >0 for all t , so that

(7) P¥* 1is a positive equilibrium.

By definition of a limit, lim Pg(t)/Pg* =1 for all Jj , so that
t = 00

(8) lim max P¥(t)/P¥* = 1 = 1lim min Pg(t)/P**
t 200 J J t 00 J J

From (7), (5) holds with P = P*x . By (8), then, u(P**) = 1 = u(p*x)

If in (2) we replace P(t) by P*(t) and P by P** , we see, in view

of (5), that P*(t) = P** for all t . In particular, this holds for

t =0, so that P* = P¥(0) = P*¥* , and hence (by (7)),

(9) P* is a positive equilibrium.

Since P¥*¥ was any limit point, the quasi-stability of the system hus
been shown. However, from the quasi-ctebliity and (b), it will be shown
that stability in the stronger sense follows.3 For by definition of a limit

point and the positivity of P* , there must exist a sequence {tnk such

3 Thus, in the theorem of the following section, it would have been possible
to infer stability in our sense from the results of Uzawa and McKenzie under
their respective assumptions. We adopt the prcsent approach partly as a
variant but mainly because it also supplies a technique for handling th~ case
of adaptive expectations.
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that PJ(tn) i Pj approaches 1 for each j . Hence,
(10) lim max Pﬁ(tn) / P*¥ = 1lim min Pj(tn) " Pj =1
t 00 J J t 200 J

But since max PJ(t) / Pg and min Pﬁ(t) / P? both converge, (10) implies
J = ‘
that they must both converge to 1. From (2), with P = P* , PJ(t) /i Pg

converges to 1 for each J , which demonstrates the conclusion.

3. Stability Under Weak Gross Substitutabllity Without Expectations.

3.1. We assume there are m commodities, numbered 1,...,m . Let
P be the vector of their prices and F(P) the vector of excess demands
as a function of P . We make the followlng assumptions (see, e.g., [Z],

Sections 1.1 and 1.3):

(W) P-F(P) = 0 ;

for each J =1,...,m ,

(H) FJ(P) is hamogeneous of degree O ,
(c) FJ(P) 1s concinuous, and

(B) FJ(P) 1s bounded from below;

and,

(8) aFJ/dpk >0 for all | £k

The dynamic system we assume 1s that introduced by McKen.ie. We

agsume

]

(p.1) P HJ(P) if P, >0 or HJ(P) >0 ,

J J

0 , otherwise,

where, for each j ,

(D.2) sgn HJ(P) = sgn FJ(P) for ail P or HJ(P) = 0 , the latter
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nolding for at most one commodity J

The furctions H ¢fre &ssumed continuous.

The dynamic system (D.1-2) is formulated to include both numéraire
and non-numéraire systems The second part of (D.1) insures that any
solution is non-negative. Any ncn-negative (# 0) initial position is

possible, except, cf course, that the numéraire price must be positive.

3.2. In tkls subsection we show that in studying the stability of
solutions of (D.1-2) we can confine ourselves to solutions P(t) which
are positivz everywhere so that, in particular, P(0) >0 . It follows
that we can disregard the second part of (D.l). We make use of some lemmas

proved in [2].

Lemma 2. Let P(t) be any solution of the system (D.1-2), where F(P)
satisfies conditions (W), (H), (C), (B), and (S). Then there exists a

possibly empty set of indices 2 and a time to such that:

(8) By(t)

(b) Bz(t) >0 for all t ;

O for t >t ;
= 0

() ﬁi = 15(0, Bs(t)] for t>t, ;

(d) sgn HJ(O, Rz) = sgn FJ(O’ RZ) for j e 4 , except for the
nunéraire, if any;

(e) the function FE(O, PZ) satisfles (H), (C), (B), (W), and (8);

(f) if P 1is any equilibrium of the excess demand functions F(P) ,

then FE is an eguilibrium for the excess demand functions

EZ(O’ Pg) in the space consisting only of the commodities in 2 .




Proof: Suppose that on the solution, P(t) , commodity J has a zero
price at some time t, >0 . It cannot be that HJ[P(tl)] >0 ; for
then, by continuity, H([P(t)] >0 for 0Zt)-€<t<t, . By (D.1),
é&(t) > 0 1in this interval. Since Pﬁ(tl- £) >0, Pj(tl) > 0 , contrary

to assumption. Hence
(11) HJ[P(tl)] <0

Since j cannot be the numéraire (which can never have a zero price because
it starts at a positive value and remains const&nt),it follows from (D.2)
that FJ[P(tl)] < 0, while PJ(tl) = 0 . By Lemma 2 of [2], however, if
Fb(Pl) < 0 for any P for which P; = 0 , then FJ(P) <0 forall P.

Now define

el

(12) Z = {‘j: P.(t) = 0 for some t >0 }

Llwil we have shown,

(13) F.(P) <O for all P
41 =
It follows from (D.1-2) that éz <0 . In particular, if Pj(tl) =0
for some J € Z , then P (t) = 0 for all t > tl . Since this holds for

J
each J € Z , (a) holds for some t, » and (b) follows by definition of 2 .

By (D.1), (c) follows from (&) and (b), while (d) is a special case of (D.2).
Finally, that (e) and (f) follow from (13) is precisely the assertion

of Lemma 3 of [2].

3.3. To prove stabllity with the aid of Theorem 1, we have to establish
or assume conditions (a)-(d). We will assume (a) and (c) hold. We have

then to establish (b) and (d). These assertions, which are dynamic in
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character, wiil be shown to follow from the following static lemma. An
analogue of thls lemma was proved for the case of gross substitutes in

the strict sense in [1] (see Lemma 3); a weaker form was established by
Uzawa [17], p. 15, Lemma 2. We make use of some steps similar to thcse

in the proof of Theorem 1 of [2].

Leima 3. If P is a positive equilibrium vecter, P a positive dis-

equilibrium vector, n(i) any permutation of the indices l,...,m such
that
P P < : , P
w(sY Fu3) S (0 2) Pranny/ By
and J 1s defined as max {J: Fn(j)(P) £ 0 }, then Fn(j)(P) < (resp.
>) 0
Proof: As in the proof of Theorem 1 of [2], we may assume without loss

of generality that P, =1 for all J + Also without loss of generality

j
we may suppose the numbering of the commodities such that PJ < Pj+l

(j = 1y...,m) . Define a sequence of price vectors, p° , by the relation
s
(14) Py = min (PS,PJ) ,

so that, in particular, P 1is an equilibrium vector (with all components
equal to P ) and P = P . From (14) and the conventions Juat made, we

see easlly that

=PS (3 >s8) ,

s+1
(16) Py =P, (3gs)
= Ps+l (3 > s)
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Thus a change from P° to P8+l involves no change in the first s

prices and an increase (or at least no decrease) in the last m - s

From (8),
(17) PL(F™) 2 Fy(P%) (5 <8)
If we write, Ps+l being positive by hypothesis,
5+1 s+1
Q = (PS/PS+1) P )

we see that the last m - s components of Qs+l are the same a¢ those of

E® while the first 8 components are smaller or the same. Hence, by (8),

Fy (") < B (F%) (3> 8)
But by (H), FJ(Q"“) = FJ(P8+1') , so that
(18) Fy(F*) < (P%) (3> 8)
From (18),
FJ(PS+1) <F(FP) 1f y2I>s

By induction on 8 , it follows that

F Ps+l)§FJ.(P]) iIf §j>d>s .

5
Since P’ 1is a positive equilibrium vector, FJ(P5 =0 . If we set

s =J -1, and distinguish the two cases, j=J, j>J , we have
J

(20) FJ(PJ) <0 for j>J




From (20),
Z T
2 P:;F(P)go
J=d41 J =
2 J J
By (W), D> __ P, F(P") =0 , so that
= J
J
ZP}IF.(PJ)ZO :
=L ¢ 4 7
From (15), Pj =P, for jSJ , so that
d i
(21) > _PF(P)>0 .
- g s
J_
From (17), FJ(PS+1) > FJ(PS) for J<J<s By induction on s ,
1gIgs

FJ(PJ) < FJ(PS) for

L}
v

In particular, let s =m , and recall that P"
(22) FJ(PJ) < FJ(P) for j < J

Finally, by (W) ,

J
=] =J+1

?

J m
J J
]FJ(P) = §=1 PJFJ(P ) + % PJ[FJ(P) - FJ(P )]+ : PJFJ(P) .

m
0=7_®
J=1

The first summation is non-negative, by (21). Each term of the second

sunmation 1s non-negative, by (22). Finally, FJ(P) =0 for J>J by
hypothesis. Hence, each term in the gecond summetion must be zero, l.e.,
J .
FJ(P) = FJ(P ) for j<J
In particuiar, let J = J and recall (19). Since FJ(P) #0 by

definition, we must have FJ(P) <0

The other half of the lemma is proved in exactly the same way.




s e S

«lla

3.4. In this subsection we derive the dynamic implications »f Lemma 3;
we shall show that the system (D.1-2) has certain properties which 1in the

next subsection will he ghown to 1mply hypotheses (b) and (d) of Theorem 1

and therefore stability.

Lemma 4. Let 8 be any set of commodities containing the numéraire, i
any, and P any positive equilibrium. Then: (A) For any given time
interval, if Pj(t) 1s identi:ally constant for all | £ S, then

max (resp., min) Pﬁ(t) s ?ﬁ ls monotonic decreasing (resp., increasing).
Je8 J€S

(B) If Pj(t) 1s constant for all t >0 for all J£S, and if max
_ - Jj€s
(resp., min) PJ(t) / Pj 1s constant for all t > 0 , then there
Jes =

exists a commodity k € S such that

max (resp., min) Pj(t) / P, = Pk(t) / ﬁk for all t
J€s Jjes J
sufficiently large.

Proof:

(A) For convenience, define

(23) V(P,P:3) = ?zg P,/ ?S g
(24) M(t) = {525 8,2,(t) / B, = ViR(t), B: 51}

For any fixed t' 1in the interval, let j' be any element of M(t')
Renumber the commodities in increasing order of PJ(t') A ﬁj . Since this
ratio is the same for all elements of M(t') , choose the numbering so that

J' 1s the last element of M(t') . Then P,(t') / B. > max P (t') / P
J J keS k :




for J>J', so that j £8 for J > J° and therefore Pj(t) is
identically constant over the given time interval by hypothesis abou*
elements £ S . By (D.1) and Lemma 2, for J§ > j' , HJ[P(t)] = 0 over

the interval. Since, for j > j’; J cannot be the numéraire (which belongs
to S ), (D.2) implies that FJ[P(ﬁ)] = 0 for all points of the time

interval and therefore in particular for t', so that

(25) FJ[P(t')] =0 for j>J'
But now by Lemma 3, Fj,[P(t')] < 0 . Since j' was any element of

M(t') ,

(26) F[P(t')] SO forall jeM(t') .

If j 1s the numéraire, then Hi = 0 ; if not, then from (D.2) and (26),

HJ[P(t')] <0 . Hence, from (D.1),

.

(27) Pj < 0 for all Jj e M(t') for all t' in the interval.
By definition sf M(t) , V[P(t'), P:8] = V[P(t'),P: M(t')] > Pj(t') /i fb

for all j € S - M(t) . Hence, for t sufficiently close to t' ,
(28) V[Ht),P:8] = V[P(t),P: M(t')]

By definition of M(t)

(29) P (t') / ﬁj = V[P(t'),P: M(t')] for all J € M(t')

We will examine the right- and left-hand derivatives of V[P(t),P:S8] at

t=1t" . From (28) ,
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(30) VIP(t' + h) , B:S] = V[P(t'),P:S]
= V[P(t' +n), P: M(t')] - V[P(t'),P: M(t')]
= Je:?:’) P(t' +n)/F - je;?:') Py(t') / P,
- Jeﬁ?ﬁ') [Py(t" +n) - P(£7)]/ P,
from (29). For h > O , then,
(31) {VIR(s' + n),B:8] - ¥[B(t),P:8]} / n
= max [P(t' +h) - Py(t)]/ (0 F))

JeM(t')
If we let h approach zero from the right, the right-hand derivative is,

then,
o ,

[ VAN

max P, /P
JeM(t') J

by (2(). Similarly, the left-hand derivative is

min P/?SO
JeM(t') J Jd =

Hence, both the right- and left-hand derivatives of V[P(t),P:S] exist and
are non-positive, so that V[P(t),P:S] is monotone decreasing, while a

similar argument shows that

min P (t) / §j
Jes ! '

is monotone increasing; this is assertion (A).

(B) By hypothesis,

(32) V[P(t),P:5) = u




say. If the numéraire J, belongs to M(t) for some value of t , then
Pi / P, = uand so the numéraire belongs to M(t) for all t , so that
(Bg holgs. Let us now assume that the numéraire belongs to M(t) for no
value of t . For each t , M(t) 1is non-null and so contains a positive

integral numter of elements. Choose to so that M(to) has fewest elements.

For simplicity, let

(33) M=Mt ), N=5-Mt)

By construction, N contains the numeraire. By definition,
(34) V[P(t),P:S] = max {?[P(t),?:M), V[e(t),B:m1},
(35) vie(t ),P:M] > V[P(t_),P:N]

Coneider ary % for which V[P(t),P:M] > V[P(t),P:N] . From (34), M(t)
must be disjoint from N and therefore a subset of M . But M(t) cannot

contain fewer elements than M(to) , so that

(36) ir V[P(t),P:M] > V[P(t),P:N] , tnen M(L) = M

Suppose V[P(t),P:N] = V[P({),P:8] for some t > t, Let t, be
the earliest such t . In view of (34) and (39),
(37) VIP(t),P:M] > V[B(¢t),B:N] for t < t<t,

Hence, by (36), M(t) = M 1in this interval. From (32), Pj(t) must be

identically constant for all j € M 1in this intervai. If j € N, then
jJeEM o j£8; 1in elther case, Pj(t) 15 constant in the interval.
Since N contains the numéraire, we cuan apply part (A) of this lemma to

the set N ; V[P(t),P:N] is monotone decrcasing in (to,tl), s0 that
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V[P(tl),F:N] < V[P(co),F:N] < V[P(to),i:M] e i V[P(tl),ﬁzs] ,

by (39), (34), and (32), contradicting the definition of tl . Hence,

V[p(t),P:8] > V[P(t),P:N] for all t > t,

from (34) and (36), M(t) = M(to) for all t > t_ . Therefore (B) holds
for any k ¢ M(to)

Again the argument for the minimum is entirely parallel.

3.5. The proof of stabllity is now an easy consejuence of Theorem 1

and Lemma k.

Theorem 2. If F(P) satisfies (W), (H), (C), (B), and (S), and if 1t
possesses a positive equilibrium, then thr: dynamic system defined by

(D.1) P

i HJ(P) if P,>0 or H(P)>O0 ,

J J

O otherwise,

H

where
(D.2) sgn H,(P) = sgn FJ(P) for all P or HJ(P) = 0, the latter
holding for at most one J ,

1s globally stable In the sense that every solution converges, provided

the solutions are unique and continuous in the starting point.

Proof: By Lemms 2, we can assume that P = E(P) and that P(0) >0
Conditions (a) &nd (c) of Thec »em 1 have been assumed here; it remains to
demonstrate (b) and {(d).

If we let S be the set of all commodities 1.....m , then assertion

A of Lemma 4 is hypothesis (t) of Theorem 1.




]G

To verify (d) of Theorem 1, let C be the set of components of P(t)

which are eventually constant other than the numéraire, if any. Then for

~
Q

t sufficiently large, C satisfles the conditions for the set S in

Lemma L4 (assertion A), so that

max P (t) / P. is monotone decreasing,
A7 J
JjeC

and

min P.(t) / P. is monotone increasing.
s N J J
jeC
Since max P, (t) /P, > min P.(t) /P, >0 , both functions are bounded
: §E @ J=
je JeC
and hence convergent.

Let P¥(t) be a limit path of P(t) . Then, by Lemma 1,

w , min Pg(t)/—f’jsﬁ ,

(38) max P%(t) / P,
J JjeC

JeC 2
for suitably chosen constants p s M

Also, by definition of the set C , PJ(L) is convergent for j e C

Again by Lemma 1,
(39) P}(t) is ldentically constant for j e C

If u = 4, then P?(t) would be constant for all j in 6’ » {rom
(38). In conjunction with (39), all components of P¥(t) would be constant,
50 that (d) would certainly be satisfied.

Otherwise, w >u . From (38), (39), and Lemma 4, assertion (B},

there exist commodities j', j" such that

(L0) Pg,(t) / ﬁj'g [ P?u(t) / 53" =p , for t sufficiently large.
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Both J' and j" are eventually constant. They cannct be the same, si.ace
B> p , and therefore they cannot both be the numéraire. Hence at least

one was not eventually constant along P(t) . Hence (d) follows, completing

the proof of Theorem 2.

4. An Example of Instability in the Absence of a Positive Eguilibrium.

When there is gross substitutabiiity in the strict sense, there must
be a positive equilibrium (cee [1], p. 88, corollary to Lemma 1). However,
(8) in its present form 1s no' sufficient ic guarantee this, so the assumption
of a positive equilibrium is er additional one. Further, it will now be
shown by means of an example, that Theorem 2, at least 1n its present form,
would not remain valid 1f this assumption were dropped.

Suppose there are two commodities, with excess demand functions,
(41) F (P) = P°/F° , F.(P) = - P._/P
] 2t"1 T ¥p 2’71

These excess demand functlons satisfy the conditions (W), (H), (C), and (8).
They do nct satisfy (B) as they stand; however, we can regard (k1) as valid
only for PE/Pl < 1, and define the excess demand functions for P2/P1 >1,
by
F =2 (B,/P) -1, F, = (P)/P,) - 2

The modified functions satisfy all conditions. In the example, we shall
only need the definition of the functions in the region, PE/Pl <1

Note that the only equilibrium points are those for which P2 =0,
Pl > 0 . Hence, there is no positive equilibrium.

We now define the adjustment process. Let

(42) ¢(u) = 2u ¢"1/u

e e b s g L R s
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This function is zero when u = O and positive for all positive values
of u , approaching infinity as u approaches infinity. By differ-
entiatio., it 1s easy to see that ¢ 1is strictly increasing. Hence, it

has a well-defined inverse W(V) defined for all non-negative v with

(43) sgn ¥(v) = sgn v
We now let

(k) H (P) = ¥(B,/P)), Hy(P) = - By/P, = Fy(P) .

From (L41), sgn F, = sgn (Pe/Pl) ; hence from (43) and (44), sgn F, =

sgn H, , while the condition, sgn F2 = sgn H2 , 1s trivially satisfied.

i1l
In fact, since H, = ¥( /?I ) , B and H, are actually monotcalc
increasing as well as sign-preserving functions of Fl and F2 , respect-

ively.

The dynami~ system, P = H(P), can be written, in view of the definitions,

bs) P ) - | P - -
(h5) @(Pl) = 92/91 » By = PE/Pl

It is easily verified that the palr of functious

-2 Jt4l
Pl(t) = Jt+l Pa(t) e OV ,
-2

constitute a solution of (45). Along this path, Pa(t)/Pl(t) <e” <1 ,
so that confining ourselves to (41) irvolved no loss of generality. But
then Pl(t) approaches infinity and so the solution is not cunvergent
in the usual sense.

Neverthele<~ it must be noted that there is a kind of convergence,

for P2(t) approaches zero, so that the solution does approach the set




2=

of equilibria (which includes all points with P2 = 0 ). Put slightly
differently, the relative prices converge, though the absolute prices are

in part unbounded.

5. OStability Under Expectations.

5.1. We now suppose that the demand for commodities depends on both
current prices and future expected prices. Let current prices be denoted
by Pj (j =1,...,m) , while expected future prices are denoted by

PJ (j = ml,...,2m) , where P, 1s the expected future price of commodity

(%

1
Jd + The vector P will have 2m components; we will also write P~ for

2

the vector of current prices, P ’?m and P~ for the vector of future

(AR

prices.

Given the vector P , each individual, and therefore the market,
determines a 2m-vector of excess demands, F(P) . The first m components,
Fl(P) = Fl(Pl,PE) , are excess demands for current goods. The last m
components, FQ(P) , are planned excess demands for the future. In the
absence of futures markets, these planned excess demands can have no
influence on prices.h We will then suppose that the dynamic relations

(D.1-2) of Section 3 apply only to current prices:

4 That current and planned excess demands depend on current and expected
prices Is, of course, a standerd doctrine; see, e.g., Hicks [10] or Lange
[11]. These works did not, however, have an explicit formulation of
stabllity as relsted to price adjustment. Patinkin [14], Chapters IV, X,
and. thelir Appendices, and Enthoven [8] have formulated dynamic models in
which current excess demands influenced current prices but plianned excess
demands had no relevance to price movements. As here, it becomes necessary
to introduce expectational assumptions; Patinkin uses static assumptions,
Enthover an assumption of extrapolation from current values ou the basis of

the current rate of change.

»
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[t}

(DE.1) P HJ(P) if P, >0 and HJ(P)>O ,

J

O otherwise,

for J':l,..-,m ;)

where

i

(DE.2) sgn HJ(P) sgn FJ(P) or HJ(P) = 0 , the latter holding for at

most one j

Since P2 enters into Fl , this dynamic theory 1s not complete. It
is necessary to postulate that PE is determined by the expeciations of the
market, which in turn will be determined by past experience in some way. We

shall adopt here the hypothesis of adaptive expectations (see Section 1),

which can be written

(DE.3) ?J =a - Pj) for j =nm+l,...,n , where a, >0

33 m 3

If there is a numéraire, Jo ; then we can assume that the market has
a perfect expectation of its price. This can be achieved without modifying
(DE.3) by assuming that for any solution the starting values, Pj (0) and

O

P, (0) , are the same.
J _+m

o
Remark 1. We do not have to worry about the expected prices becoming
negative. From (De.l), Pj(t) >0 for j<m . Then if Pj(t) =0 for

j-m(t) >0, so that, from (DE.3), Pj >0

A point P satisfying the conditions,

some j>m , P

Fl(-ﬁ)go,"ﬁl'Fl(ﬁ)=O,§l=F2 5

is necessarily an equilibrium of the dynamic system (DE.1-3). We shall
postulate that there exist competitive equilibria with respect to the entire

set of excess demand functions (including those for future goods) for which




<2~

current and future expected priccc ure equal; these will be termed stationary

equilibria. This assumption could be deduced from some stationarity condi-

tions on the excess demand functions or the utility functions underlyiug them.

For such an equilibrium, by definition,
F(F) <0, B =B

and, by (W), P-F(P) =0 = ?l-Fl(§)+§2'F&(§>-Since each term 1s non-positive,

?l-Fl(f) = 0 , and so, by the previous remarks, a stationary equilibrium is

an equilibrium of the dynamic system (DE.1-3).

We shall in fact postulate the existence of stationary equilibria ot
only for the original system but also for all systems formed from it by
combining a set of commodities into a composite commodity.

)

(SE) There exists P- such that F(Fl, < 0 ; further, if we defire,

for a given set of commodities S and a given weight vector ng y

1 1 .2 2 S ig— .
GJ(PS’pO’PS’pO) = FJ(Pb’p T%—’) PSJ 7 ’Tvg) for j e S
or j-meS ,
1,1 1 2 2 2
GO(PQ, o’ PS’p ) = E n F (P S’p Wg) S’P vag) ’

jeg )

2,1 1 2 2 E::
GO(PS,pO’PS,pO) fni jeg nJFJ+m S)-.o ,g Pzﬁpo ﬂ,g )
50 that we are forming a composite commodity from a set § of the current

commodities and another composite commodity from the corresponding set of

future commodities, then therec exists ?é, Ei such that
et A3 N U0
G(P",p_,F ,p)) <0

To simplify matters, we ignore (unlike in the previous parts of the

paper) the difficulties of corner equilibria by postulating posltive demand

for free goods,




(PF) 1ir Pﬁ = 0 , then Fb(P) >0 (J=1,...,m)

Remark 2. From (PF), we cannot have Fﬁ =0 for any J 1in (SE).
Hence, we certainly have a positive equilibrium, and condition (a) of
Theorem 1 is fulfilled. Also, the second line of !DE.1) becomes super-

fluous, for suppose Pj(t) =0 for some t >0, and j<m . Then

F. >0 , while commodity Jj cannot be a numéraire, and therefore Hj = 01,
Further, then éj(t) >0, so that Pj(t SNe ) s Pj(t) for €& sufficiently
small. Since Pj(t -€) z o, Pj(t) >0 ., Hence, we can assume that
P(0) > 0 without loss of generality.

Finally, we will assume as before that the functions F(P) satisfy

all the conditions (W), (H)}, (C), (B), and (S).

5.2. Theorem 3. Under the assumptlons of Section 5.1, the dynamic
system defined by (DE.1-3) is globally stable in the sense that every

solution converges, provided the solutions are unique and continuous in

the starting point.

Proof: As before, we use Theorem 1. Hypothesis (&) is implied by
assumption (PF) (see Remark 2 of %.1); hypothesis (c) is explicitly stated.

It remalns to verify hypotheses (b) and (d).

By (SE) and (PF), we can choose & positive equilibrium P with
(46) P, =P, (3 =1,...,m)
Suppose Jj 1is such that

(47) P (t) /ij = P(t) /B
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If j<m, we may apply Lemma 3; we must have Fb[P(t)] < 0 and there-

fore HJ[P(t)] <0 . If §J>m, then, by assumption,
PJ(t) / P, 2 Pﬁ_m(t) / Py

From (46), P,(t) > P, (t) , and by (DE.3), éﬁ(t) <0 . Since this

holds for all J for which (47) holds, it follows from the proof of

Lemma 4(A) thau

(48) max Pk(t) / §k is monotonic decreasing.
k

An exactly parallel argument applies to min Pk(t) s f; , 80 that
o :
hypothesis (b) of Theorem 1 1s verified.
We have finally to verify hypothesis (d) of Theorem 1. As in the

proof of Theorem 2, we let C Dbe the eventually constant set of

components of P(t) other than the numéraire. Let
Cl = {Ji J § m, Je C} ” 02 = {j: J § m, j#m e C }.

The set C 1s completely determined by Cl and 02 . If J e 02 b

then from (DE.3), PJ(t) = Pj+m(t) for t sufficiently large; since

Pj+m(t) is constant for t sufficiently large, by definition, we must

have Jj ¢ Cl 5
C2<: Cl 5
Let P*(t) be a limit-path of P(t) . We must show that at least one
element not eventually constant on P(t) 1is eventually constant on P*(t)

We consider two cases. First suppose that there i1s at least ore g A Cl

but not in C . Since PJ(t) 1s constant for t sufficiently large,

)
[=4

i N I——



the differentia. equation (DE.3), with [ replaced by Jj+m , becomes a

single differential equation with a stable solution, so that PJ+m(t)

converges. Then by Lemma 1, PEJm(t) 1s constant. Since J did not

belong to 02 »

component in P*(t) than in P(t)

this means there is at least one more eventually constant

Now suppose that C; = C, . For t sufficiently large, PJ(t) and

E3+m(t) are constant for j e C;

Pj(t) = Pj+m(t) . Let the common co

By Lemma 1, we must also have

> .4

Px(t) = P¥  (t)

C.
L‘-

Now form all the commodities in Cl s

From (DE.3), we must have

nstant values form a vector, o
il

]
=

J

together with the numéraire, if any,

into a single composite commodity. Let V be the reualning current

commodities. Call the new set of excess demand functions G(P) ; they are

defined as in the statement of assump

tion (SE). The corresponding dynamic

system 1s
(49) ap./at = H (P) = H(Fg , n, , By , iy ) (JeV) ,
J 3] J'C C C
1 1 1 1
d.PJHn/d.t = ajﬂn(Pj - ij) for jeV .
The system (49) is satisfied by P(t) , for = sufficiently large, and
P¥(t) . It also satisfies all the conditions of the Theorem, in view of

(SE), so that we can conclude that (48) holds for this system. Let W be

the variables of (49) (including the composite numéraire). Then, by Lemma 1,

(50) max PX(t) /
kew Y

P, =4, min Pg(t)/-f’zg
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In the next subsection (5.3), we will demonstrate (Lemma 5) that from (50),

we can infer the existence of Jj' , J" € W such that

(51) P:{v(t) / FJ = E»‘ Pg"(t> / _I;J ‘z'y.. ’
If W=y, then Pg(t) must be constant for all Jj € W and therefore for
JeG or j such that j-meCl . Since the other variaoles are

certainly constant, then all variables are constant and (d) is satisfied.

If w>4p , then j' and J" are distinct and cannot both be the

composite mumérsire. Neither j' nor J" belong to C so tha: (d) is

again verified.
5.3. We have only to prove the following lemma:
Lemma 5. If max (resp.,min)PJ(t) / §J is identically constant, then
J J

there is some j' such that

Pj,(t) / EJ ® max Pj(t) / ?J for t sufficiently large.
J

Proof: 8uppose not.

i
=1

(52) max Pj(t) / P

j J
Then in particular,
(53) PJ(t) < §J in some time interval, for Jj < m
From (DE.3),

-ajt t ajs
CONE O R RO R XORD
Since, by (52),
P, (0)<uP, , P(s) < u P, for all s ,

J+m
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it follows from (54) that

-a.t-_ -y t a.s -
P, (t)<e J[nP +a,n P, J[ e ! ds] = u P
= oo J

(Indeed, Pj+m(t) 1s in effect a weighted average of Pb+m(0) and past

values of PJ(S).), Further, the strict inequality holds if PJ(B) <u FJ
over some s-interval. In view of (53), we can conclude
(55) PJ+m(t) / fﬁ < u for all t sufficlently large.

Let
(56) M(t):{j: PJ(t)/-§J=E},F={J:J>m}.
From (56), (55) can be written

(57) M(t) 1is disjoint from F for t 2t

for suitable to

» choose t, so that the number of elements

Among values of t Z to 1
of M(t) 1s minimal. Let
(58) M= M), N=f: J<m, 5d ],

Suppose V[P(¢) , P: M] > V[P(t), P: N] . In view of (57), it follows
that M(t)e M . But for t > to » 1t follows from the choice of tl that

M(t) cannot be a proper subset of M

(59) If V[P(t), P: M] > V[P(t), P: N] , then for t >ty M(t) = M
Suppose for some t 2 tl :

VIiP(t) , P: M] = V[P(t) , P: N]
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Iet t, be tre smallest such t . Then, since VIP(t,), P: M] > V(P(tl){i: N]

by definition of tl , we must have t2 > tl , and

(60) V[p(t), P: M] > V[P(t), P: N] for t, St<t, ,
(61) VIP(tQ), P: M] = V[P(tg), P: K] .

Let

(62) N(t) = {J: JeN, Pd(t) / EB = V[p(t), P: N] } .

From (59) and (60), M(t) =M for t,gt<g, . Ina sufficiently
small left-hend neighborhood of t, , it follows from (61) and (55) that
PJ(t) / ?5 has a greater value for j € N(t) than for J >m . Hence,
if the commodities (present and future together) are ranked in increasing
» order of PJ(t) y ?J , the elements of M will be the highest, those in
N(t) the next highest.
At the same time, if ¥ contained the numéraire, the conclusion of
the lemma would hold, contrary to supposition. Since Pﬁ(t) / §J = p for

J €M for t <t<t PJ(t) is iderntically constant over this interval,

2 2
so that H[P(t)] =0 . Since J is ot the numeraire,

I

(63) FJ[P(t)] 0 for t, <t<t, .

) S
In view of the ranking found in the preceding paragraph, it follows

from (63) and Lemma 3 that FJ[P(t)] <0 for all J € N(t) . This implies

that HJ[P(t)] <0 forall e N(t) , and hence, by the reasoning used

in the proof of Lemma 4(Aj,
V[P(t), P: N] 1is morotone decreasing in a left-hand neighborhood of t,

But then it is impossible, as implied by (60) and (61) that

ViP(t), P: K] < for t< t, V[PG%) , P: Nl = u .
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